Aging-associated metabolic disorder induces Nox2 activation and oxidative damage of endothelial function
نویسندگان
چکیده
Oxidative stress attributable to the activation of a Nox2-containing NADPH oxidase is involved in the development of vascular diseases and in aging. However, the mechanism of Nox2 activation in normal aging remains unclear. In this study, we used age-matched wild-type (WT) and Nox2 knockout (KO) mice at 3-4 months (young); 11-12 months (middle-aged) and 21-22 months (aging) to investigate age-related metabolic disorders, Nox2 activation and endothelial dysfunction. Compared to young mice, middle-aged and aging WT mice had significant hyperglycaemia, hyperinsulinaemia, increased systemic oxidative stress and higher blood pressure. Endothelium-dependent vessel relaxation to acetylcholine was significantly impaired in WT aging aortas, and this was accompanied by increased Nox2 and ICAM-1 expressions, MAPK activation and decreased insulin receptor expression and signaling. However, these aging-associated disorders were significantly reduced or absent in Nox2KO aging mice. The effect of metabolic disorder on Nox2 activation and endothelial dysfunction was further confirmed using high-fat diet-induced obesity and insulin resistance in middle-aged WT mice treated with apocynin (a Nox2 inhibitor). In vitro experiments showed that in response to high glucose plus high insulin challenge, WT coronary microvascular endothelial cells increased significantly the levels of Nox2 expression, activation of stress signaling pathways and the cells were senescent, e.g. increased p53 and β-galactosidase activity. However, these changes were absent in Nox2KO cells. In conclusion, Nox2 activation in response to aging-associated hyperglycaemia and hyperinsulinaemia plays a key role in the oxidative damage of vascular function. Inhibition or knockout of Nox2 preserves endothelial function and improves global metabolism in old age.
منابع مشابه
Aldosterone Induces Oxidative Stress Via NADPH Oxidase and Downregulates the Endothelial NO Synthesase in Human Endothelial Cells
Aldosterone is traditionally viewed as a hormone regulating electrolyte and blood pressure homeostasis. Recent studies suggest that Aldo can cause microvascular damage, oxidative stress and endothelial dysfunction. However, its exact cellular mechanisms remain obscure. This study was undertaken to examine the effect of Aldo on superoxide production in human umbilical artery endothelial cel...
متن کاملOxidative stress improves coronary endothelial function through activation of the pro-survival kinase AMPK
Age-associated decline in cardiovascular function is believed to occur from the deleterious effects of reactive oxygen species (ROS). However, failure of recent clinical trials using antioxidants in patients with cardiovascular disease, and the recent findings showing paradoxical role for NADPH oxidase-derived ROS in endothelial function challenge this long-held notion against ROS. Here, we exa...
متن کاملSpironolactone Inhibits NADPH Oxidase-Mediated Oxidative Stress and Dysregulation of the Endothelial NO Synthase in Human Endothelial Cells
Accumulating evidence indicates that aldosterone plays a critical role in the mediation of oxidative stress and vascular damage. NADPH oxidase has been recognized as a major source of oxidative stress in vasculature. However, the relation between NADPH oxidase in aldosterone-mediated oxidative stress in endothelial cells remains to be ascertained. The present study aimed to investigate the rel...
متن کاملSpironolactone Inhibits NADPH Oxidase-Mediated Oxidative Stress and Dysregulation of the Endothelial NO Synthase in Human Endothelial Cells
Accumulating evidence indicates that aldosterone plays a critical role in the mediation of oxidative stress and vascular damage. NADPH oxidase has been recognized as a major source of oxidative stress in vasculature. However, the relation between NADPH oxidase in aldosterone-mediated oxidative stress in endothelial cells remains to be ascertained. The present study aimed to investigate the rel...
متن کاملProtection against vascular aging in Nox2-deficient mice: Impact on endothelial progenitor cells and reparative neovascularization.
BACKGROUND Aging is associated with increased oxidative stress levels and impaired neovascularization following ischemia. Because Nox2-containing NADPH oxidase is a major source of ROS in the vasculature, we investigated its potential role for the modulation of ischemia-induced neovascularization in the context of aging. METHODS AND RESULTS Hindlimb ischemia was surgically induced by femoral ...
متن کامل